RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика // Архив

Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2016, номер 4, страницы 7–18 (Mi vagtu450)

Эта публикация цитируется в 1 статье

КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА

Исследование влияния параметров нечеткой модели на точность классификации прецедентов

Е. С. Макарова

Новосибирский государственный технический университет

Аннотация: Метод рассуждений на основе прецедентов (Case-Based Reasoning, CBR) используется для представления знаний в социально-экономических системах. Представлена история развития метода рассуждений на основе прецедентов и применение этого метода в различных областях. Рассматривается гибридная модель представления знаний на основе интеграции метода рассуждений на основе прецедентов и нечеткой логики. Рассмотрен алгоритм формирования нечетких правил, где каждая входная лингвистическая переменная может принимать 3, 5 или 7 терм-значений, описываемых треугольными функциями принадлежности. Предлагается новая процедура аккумуляции заключений конкурирующих правил, полученных в результате логического вывода. Исследуется точность классификации полученной гибридной модели на разных наборах данных и с различным набором функций принадлежности. Результаты исследований позволяют утверждать, что разработанный метод машинного обучения на основе нечеткого вывода существенно повышает точность классификации прецедентов.

Ключевые слова: прецедентный подход, прецедент, нечеткая логика, нечеткое множество, нечеткие правила, логический вывод, база знаний, процедура аккумуляции.

УДК: 004.896

Поступила в редакцию: 29.07.2016



© МИАН, 2024