RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика // Архив

Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2016, номер 4, страницы 118–128 (Mi vagtu461)

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Модель и алгоритм расчета вероятностных характеристик процессов хранения и переработки рефрижераторных контейнерных грузов

Л. А. Павлова, С. С. Соколов, В. Д. Гаскаров

Государственный университет морского и речного флота им. адмирала С. О. Макарова

Аннотация: Для описания пропускной способности контейнерных терминалов ранее использовались детерминированные методы, приводящие к большим допущениям при расчетах. Эти методы не отражают всю специфику переработки и хранения рефрижераторных грузов: интервал времени между моментами поступления требования в канал обслуживания и выхода требования из этого канала не носит случайного характера, однако момент доставки партий контейнерных грузов к терминалу представляет собой случайный поток событий. В рассматриваемой системе массового обслуживания разомкнутого многоканального типа, на которую поступают нерегулярные однородные или неоднородные потоки заявок с неограниченным временем ожидания, основной задачей является расчет времени ожидания партий контейнеров в очереди на хранение. Для нахождения этого параметра необходимо исследовать процесс, протекающий при обработке и хранении контейнерных рефрижераторных грузов в терминалах, — процесс дискретного типа с конечным (или счетным в общем случае) множеством состояний. Под множеством состояний понимается изменение количества партий груза, находящихся в очереди на переработку. Исследуемые процессы грузовых партий переходят из одного состояния в другое в моменты, когда прибывает новая партия груза или освобождается одна из условно функциональных секций. Для разработки математической модели использовались частная теорема о повторении опытов, разложение бинома Ньютона в степени, закон распределения Пуассона. Для описания вероятности отдельных состояний использовалась теорема Байеса. Система подчиняется следующим особенностям потока требований: поток ординарный, стационарный и без последействий. Система рассматривается на примере функционирования контейнерного терминала, имеющего условно функциональные секции с определенным коэффициентом заполнения, на который поступает нерегулярный неоднородный поток судов с результирующей интенсивностью. Система позволяет оптимизировать такие факторы, как простой оборудования, избыток мест на складах хранения, образование очередей и возможность учёта случайных величин (момент прибытия груза и интервал времени переработки груза).

Ключевые слова: система массового обслуживания, пуассоновский поток, контейнерный терминал, хранение и обработка контейнерных грузов, вероятностные модели.

УДК: 656.025.4/.6

Поступила в редакцию: 12.04.2016



© МИАН, 2024