Аннотация:
Объектом исследования является процесс обнаружения вредоносной информации в социальных сетях и глобальной сети. Предложен подход к верификации (определению) параметров математической модели случайного процесса обнаружения вредоносной информации с недостоверно, неточно (противоречиво) заданными исходными данными. Подход основан на использовании стохастических уравнений состояния и наблюдения, базирующихся на управляемых цепях Маркова в конечных разностях. При этом верификация ключевых параметров математической модели такого типа — элементов матрицы одношаговых переходных вероятностей — осуществляется путем использования экстраполирующей нейронной сети. Это позволяет учесть и компенсировать недостоверность исходных данных, присущую случайным процессам поиска и обнаружения вредоносной информации, а также повысить достоверность принятия решений по оцениванию и категоризации цифрового сетевого контента для обнаружения и противодействия информации такого класса.