RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика // Архив

Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2020, номер 1, страницы 29–40 (Mi vagtu613)

Эта публикация цитируется в 2 статьях

КОМПЬЮТЕРНОЕ ОБЕСПЕЧЕНИЕ И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА

Анализ применения методов машинного обучения компьютерных систем для повышения защищенности от мошеннических текстов

С. Д. Шибайкин, В. В. Никулин, А. А. Аббакумов

Национальный исследовательский Мордовский государственный университет им. Н. П. Огарева, Саранск, Республика Мордовия, Российская Федерация

Аннотация: Неотъемлемым условием функционирования каждой компании, работа которой связана с хранением информации, является безопасность в сфере IT. Проанализированы различные модели детекции мошеннических текстов, включая машину опорных векторов, нейронные сети, логистическую регрессию, наивный байесовский классификатор. Предложено повысить эффективность детекции мошеннических сообщений путем объединения классификаторов в ансамбли. Метаклассификатор позволяет учитывать значения точности всех анализаторов, задействуя в работе построение матрицы весов и характеристику, определяющую минимальную границу точности. На базе разработанного метода создан и апробирован программный модуль классификации мошеннических текстовых сообщений, написанный на языке Java с использованием класса М1 открытой библиотеки OPENCV. Приведен общий алгоритм работы ансамблевого метода. Выполненный эксперимент на базе логистической регрессии, наивного байесовского классификатора, многослойного персептрона и ансамбля этих классификаторов выявил максимальную эффективность наивного байесовского алгоритма классификации и перспективность объединения классификаторов в ансамбли. Комбинированные методы (ансамбли) улучшают результаты и увеличивают эффективность анализа в отличие от работы отдельных анализаторов.

Ключевые слова: мошеннический текст, детекция, текстовые данные, машинное обучение, классификатор, нейронная сеть, ансамбль-система, алгоритм.

УДК: 004.7:004.056.5

Поступила в редакцию: 18.09.2019

DOI: 10.24143/2072-9502-2020-1-29-40



© МИАН, 2024