Аннотация:
Рассматривается вопрос применения искусственных нейронных сетей для распознавания условно-графических обозначений электротехники, в частности, исследуются сверточные нейронные сети и наиболее подходящая для решения поставленной задачи модель распознавания объектов R-CNN. Распознавание образов конкретного изображения является задачей, которая ставится перед сложными системами обработки информации, а также системами управления и принятия решений. Классификация различных технологических, природных объектов, аналоговых и цифровых сигналов формируется повсеместно набором присущих только им признаков и свойств. Определение вида и признаков объекта находит свое применение в различных отраслях науки: машинном обучении, диагностике, метеорологии, системах видеонаблюдения и обеспечения безопасности, в системах виртуальной реальности и поиска по изображению. Однако для решения прикладных задач и достижения необходимых показателей (например, в области распознавания условно-графических обозначений электротехники) исследования не проводились. Отмечается, что среди всех математических моделей и методов распознавания образов наиболее качественными и перспективными являются нейронные сети. Что касается вопроса интерактивности, выходным результатом работы распознавания по изображению является необходимый и достаточный ответ, который не имеет устойчивой работы по классификации объектов в пределах категорий и их инвариантным преобразованиям. Подробно изучена схема работы модели R-CNN, а также обоснованы важность обучающей выборки и ее влияние на качество распознавания образов нейронной сетью. В общем виде показано применение способа «RoI Pooling» для распознавания объектов на изображении, за счет которого выделяется несколько областей интереса, указанных через ограничивающие рамки.