Аннотация:
Рассматривается проблема конфигурации кластеров Kubernetes. Так как настройки кластера производятся с помощью конфигурационных файлов YAML, содержащих в себе большое количество параметров, ссылок на репозитории (открытые и закрытые) и внешние источники данных, то довольно просто допустить ошибку, которая может привести к существенным издержкам в будущем. Когда все необходимые данные для файла корректно подготовлены, необходимо их правильно скомпоновать в соответствии с синтаксисом разметки YAML. Цель работы – поиск оптимального метода автоматизации построения конфигурационного файла Kubernetes на основе статистических данных. Проведен анализ проблемы конфигурации Kubernetes на основе YAML-файлов и проблемы интерпретации статистических данных в структурированный файл YAML и предложены конкретные методы и подходы по решению указанных проблем. Приводится измененный алгоритм множественной линейной регрессии для работы с собранными статистическими данными, результат выходных данных алгоритма и блок-схема паттерна, адаптированного для построения YAML-файлов. Предложенные подходы позволяют использовать дополнительные инструменты для работы с тестовыми и рабочими кластерами Kubernetes, что позволяет снизить сложность взаимодействия разработчиков с ними и повысить скорость развертывания и масштабируемость. Кроме того, описанные методы позволяют упростить администрирование крупных сетей и автоматизировать процесс создания конфигурационных YAML-файлов для популярных шаблонов программного обеспечения.
Ключевые слова:алгоритм, файл, конфигурация, библиотека классов, паттерн.
УДК:
004.451.26
Поступила в редакцию: 10.04.2024 Принята в печать: 11.10.2024