Аннотация:
Исследуется существование и единственность решения локальной задачи для вырождающегося уравнения смешанного типа. Рассматривается параболическо-гиперболическое уравнение с дробной производной Капуто. Единственность решения доказана с использованием экстремального принципа и интеграла энергии, существование доказано методом интегральных уравнений.
Ключевые слова:краевая задача, вырождающееся уравнение, параболо-гиперболический тип, гипергеометрическая функция Гаусса, задача Коши, существование и единственность решения, принцип экстремума, метод интегральных уравнений, дробная производная Капуто.