RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник КРАУНЦ. Физико-математические науки // Архив

Вестник КРАУНЦ. Физ.-мат. науки, 2018, номер 1(21), страницы 93–116 (Mi vkam235)

ИНФОРМАЦИОННЫЕ И ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ

Численный анализ задачи Коши для широкого класса фрактальных осцилляторов

Р. И. Паровикab

a Институт космофизических исследований и распространения радиоволн ДВО РАН
b Камчатский государственный университет им. Витуса Беринга

Аннотация: В статье рассмотрена задача Коши для широкого класса фрактальных осцилляторов и проведено ее численное исследование с помощи теории конечно-разностных схем. Фрактальные осцилляторы характеризуют колебательные процессы со степенной памятью или в общем случае с эредитарностью и описываются с помощью интегро-дифференциальных уравнений с разностными ядрами — функциями памяти. Выбирая функции памяти степенными, интегро-дифференциальные уравнения приводятся к уравнениям с производными дробных порядков. В работе, с помощью аппроксимации дробных производных Герасимова–Капуто, была разработана нелокальная явная конечно-разностная схема, обоснованы ее устойчивость и сходимость, приведены оценки вычислительной точности численного метода. Приведены примеры работы предложенной явной-конечной схемы. Показано, что порядок вычислительной точности стремиться к единице при увеличении количества расчетных узлов сетки и совпадает с порядком аппроксимации явной конечно-разностной схемы.

Ключевые слова: задача Коши, фрактальные осцилляторы, эредитарность, оператор Герасимова–Капуто, численная схема, устойчивость, сходимость, правило Рунге.

УДК: 517.938

MSC: Primary 34A08; Secondary 34K28, 37N30

Поступила в редакцию: 20.12.2017

DOI: 10.18454/2079-6641-2018-21-1-93-116



Реферативные базы данных:


© МИАН, 2024