Аннотация:
В работе рассматривается применение моделей биологической нейронной сети для сегментации изображения фации биожидкости, полученной методом клиновидной дегидратации. Выделены основные характерные особенности, присущие паттернам фаций биожидкостей, а также основные этапы их цифровой обработки в рамках задачи распознавания образов. Проведен анализ использования искусственных нейронных сетей для цифровой обработки изображений для разных уровней представления данных; сделан обзор основных нейросетевых методов сегментации. Описан принцип построения биологически достоверных искусственных нейронных сетей, использующих механизмы изменения мембранного потенциала нейронов и учитывающих при генерации спайка как вызванную активность, так и эндогенную (спонтанную) активность нейронных кластеров. Описан механизм инициации спайка для метаботропных и ионотропных рецептивных кластеров с указанием природы запускающего внешнего воздействия. Проведен анализ существующих математических моделей биологических нейросетей, содержащих помимо обычных функциональных нелинейностей нелинейности гистерезисной природы. Сделан выбор в пользу математической модели, использующей дифференциальные уравнения с запаздыванием, которые могут быть применены как для описания отдельного биологического нейрона, так и для описания работы нейронной сети.