Аннотация:
В работе исследуется линейное обыкновенное дифференциальное уравнение второго порядка с оператором непрерывно распределенного дифференцирования, и для него изучается двухточечная краевая задача методом функции Грина. Вводится в рассмотрение специальная функция, в терминах которой строится функция Грина задачи Дирехле и доказываются основные свойства. Определены достаточные условия на ядро оператора непрерывно распределенного дифференцирования, гарантирующие выполнения условия разрешимости задачи Дирихле. В случае, когда однородная задача Дирихле для рассматриваемого однородного уравнения имеет нетривиальное решение получено неравенство типа Ляпунова для ядра оператора непрерывно распределенного дифференцирования.
Ключевые слова:оператор дробного интегродифференцирования, оператор непрерывно распределенного дифференцирования, задача Дирихле, неравенство типа Ляпунова.