Аннотация:
В статье представлены результаты работы по сегментации изображений отдельных снимков магнитно-резонансной томографии забрюшинного пространства. Рассматриваются вопросы обнаружения и сегментации объектов магистральных вен забрюшинного пространства на основе свёрточной архитектуры нейронной сети для семантической пиксельной сегментации. Предлагается автоматический, точный и надежный метод с использованием свёрточной нейронной сети U-Net для извлечения сосудов вен из МРТ изображений. Глубокое обучение сети с большим рецептивным полем U-Net позволяет достичь значительных результатов даже при наличие не качественных исходных данных, на малых обучающих выборках. Стратегия расширения данных представляется эффективным способом уменьшения степени переобучения в распознавании медицинских образов — вен.