Аннотация:
В работе исследуется вторая краевая задача в полуполосе для параболического уравнения с оператором Бесселя, действующим по пространственной переменной, и частной производной Герасимова–Капуто по времени. Доказаны теоремы существования и единственности решения рассматриваемой задачи. Представление решения найдено в терминах интегрального преобразования с функцией Райта в ядре. Единственность решения доказана в классе функций быстрого роста. При частных значениях параметров, содержащихся в рассматриваемом уравнении, последнее совпадает с классическим уравнением диффузии.
Ключевые слова:дробная производная, оператор Бесселя, функция Райта, функция Бесселя.