Аннотация:
Рассмотрена задача вычисления определенного интеграла функции, для которой известны значения ее самой и набора производных до заданного порядка в точках отрезка интегрирования. Построены составные квадратурные формулы, которые используют значения функции и ее производных до m-го порядка включительно. Получено представление остаточного члена, выраженное через производную соответствующего порядка и число узловых точек. Приведены примеры интегрирования заданных функций с исследованием погрешности и ее оценки. Дано сравнение с известными численными методами и формулой Эйлера-Маклорена, которое показало повышенную точность и лучшую сходимость метода двухточечного интегрирования
Ключевые слова:квадратурные формулы с использованием производных, составная квадратурная формула, остаточный член интегрирования, оценка погрешности приближения, формула Эйлера-Маклорена.