Аннотация:
Одна из основных проблем вычислительной математики — оптимизация вычислительных методов в функциональных пространствах. Оптимизация вычислительных методов хорошо проявляется в задачах теории интерполяционных формул. В данной статье исследуется проблема построения оптимальной интерполяционной формулы в гильбертовом пространстве. Здесь с помощью метода Соболева решается первая часть задачи — явное выражение квадрата нормы функционала погрешности оптимальных интерполяционных формул в гильбертовом пространстве $W_2^{(2,0)}$.