Аннотация:
Исследуется нелокальная краевая задача для системы обыкновенных интегро-дифференциальных уравнений первого порядка с импульсными эффектами и смешанными максимумами. Краевая задача задается интегральным условием. Используется метод последовательных приближений в сочетании с методом сжимающего отображения. Доказаны существование и единственность решения краевой задачи. Показана непрерывная зависимость решений от правой части граничного условия.
Ключевые слова:импульсные интегро-дифференциальные уравнения, нелокальные граничные условия, смешанные максимумы, последовательные приближения, существование и единственность решения, непрерывная зависимость решения.