Аннотация:
В работе обсуждается моделирование варианта развития стремительного инвазионного процесса. Появление опасных чужеродных видов в конкурентных биосистемах приводит к экстремальными явлениям в динамике популяций. Инвазии генерируют фазу активного распространения чужеродного вида, но после вспышек часто следует фаза резкой депрессии. Изменения процесса связаны с активным противодействием, которое имеет отложенный интервал времени активации и пороговый уровень максимизации воздействия $J$. Для математической формализации последовательно следующих этапов вспышки/кризиса использованы уравнения с отклоняющимся аргументом. Во варианте уравнения с запаздывающей настройкой биотического противодействия $\dot x=rf(x(t-\tau))-\mathfrak{F}(x^m(t-\nu);J)$ описан вариант прохождения кризиса, который наступает именно в фазе стремительного роста и до достижения уровня балансового равновесия с ресурсами среды. За счет пороговой обратной связи конкурентное давление после глубокого кризиса ослабляется и инвазивная популяция переходит в режим затухающих осцилляций. Асимптотический уровень равновесия в сценарии с кризисом оказывается гораздо меньше теоретически допустимого предельного уровня численности для чужеродного вида в данной среде. Уравнение имеет интерпретацию и для описания ослабляющейся выработки иммунного ответа в ситуации хронизации инфекционного процесса.