RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник КРАУНЦ. Физико-математические науки // Архив

Вестник КРАУНЦ. Физ.-мат. науки, 2022, том 40, номер 3, страницы 7–15 (Mi vkam549)

МАТЕМАТИКА

Об одной нелокальной краевой задаче для модельного нелокального уравнения гиперболического типа

А. Х. Аттаев

Институт прикладной математики и автоматизации КБНЦ РАН

Аннотация: В работе проводится исследование задачи с внутренне-краевым нехарактеристическим смещением для модельного существенно нагруженного уравнения гиперболического типа второго порядка с двумя независимыми переменными. Обращено внимание на то, что для нагруженных гиперболических уравнений, когда нагрузка является характеристической, основные начальные и краевые задачи ставятся также как для обычных уравнений. Но если нагрузка является нехарактеристической, то нужно правильно выбирать те многообразия, которые будут носителями начальных, краевых и смешанных данных. Приводится аналог теоремы о среднем и аналог формулы Даламбера. Для решения поставленной задачи применяется метод Даламбера

Ключевые слова: существенно нагруженное дифференциальное уравнение, внутренне-краевое смещение, нехарактеристическое смещение, теорема о среднем, метод Даламбера, функциональное уравнение, характеристики гиперболического уравнения.

УДК: 517.984.5

MSC: 35L10

DOI: 10.26117/2079-6641-2022-40-3-7-15



Реферативные базы данных:


© МИАН, 2024