Аннотация:
В работе исследована краевая задача Дирихле в верхней полуплоскости для уравнения в частных производных второго порядка, содержащего композицию операторов дробного дифференцирования Римана-Лиувилля по одной из двух независимых переменных. Рассматриваемое уравнение при целом значении порядка дробного дифференцирования переходит в уравнение Лапласа от двух независимых переменных. Получено представление решения исследуемой задачи в явном виде (в терминах функции типа Миттаг-Леффлера) методом интегрального преобразования Фурье. Найдены асимптотические оценки частного решения и его производных. Доказаны теоремы о существовании и единственности регулярного решения. Существование решения доказано в классе непрерывных функций с весом в замкнутой полуплоскости. Единственность решения доказана в классе непрерывно дифференцируемых функций по пространственной переменной и имеющих соответствующую непрерывную дробную производную с весом по временной переменной в замкнутой полуплоскости.
Ключевые слова:дробная производная, функция типа Миттаг-Леффлера, обобщенное уравнение Лапласа с дробной производной, задача Дирихле.