RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник КРАУНЦ. Физико-математические науки // Архив

Вестник КРАУНЦ. Физ.-мат. науки, 2023, том 42, номер 1, страницы 98–107 (Mi vkam587)

МАТЕМАТИКА

Задача Коши для уравнения с дробной производной Джрбашяна – Нерсесяна с запаздывающим аргументом

М. Г. Мажгихова

Институт прикладной математики и автоматизации – филиал Федерального государственного бюджетного научного учреждения «Федеральный научный центр «Кабардино – Балкарский научный центр РАН»

Аннотация: Последние десятилетия количество работ, посвященных исследованию задач для дифференциальных уравнений дробного порядка, заметно растет. Интерес исследователей вызван тем, что количество областей науки, в которых используются уравнения, содержащие дробные производные, варьируется от биологии и медицины до теории управления, инженерии, финансов, а также оптики, физики и так далее. Включение запаздывания в уравнение дробного порядка существенно влияет на ход процесса, описываемого этим уравнением, так как неизвестная функция задается при различных значениях аргумента, что вносит эффект предыстории в уравнение. Поэтому, математические модели, содержащие дробный оператор и запаздывающий аргумент, более точны, чем модели, содержащие производные целого порядка. В данной работе исследуется задача Коши для линейного обыкновенного дифференциального уравнения с запаздывающим аргументом c оператором дробного дифференцирования Джрбашяна – Нерсесяна, обобщающим известные дробные операторы Римана – Лиувилля и Герасимова – Капуто. Результаты работы получены с использованием методов теории целого и дробного исчислений, методов теории дифференциальных уравнений с запаздывающим аргументом, метода специальных функций. В работе доказывается теорема о справедливости аналога формулы Лагранжа. Также доказано, что специальная функция $W_{\gamma_m}(t)$, которая, в свою очередь, определяется через обобщенную функцию Миттаг – Леффлера (или функция Прабхакара), удовлетворяет уравнению и условиям, сопряженным исследуемому, и является фундаментальным решением рассматриваемого уравнения. Сформулирована и доказана теорема существования и единственности решения начальной задачи. Решение поставленной задачи выписано в терминах специальной функции $W_\nu(t)$.

Ключевые слова: производная Джрбашяна – Нерсесяна, уравнение дробного порядка, уравнение с запаздывающим аргументом, формула Лагранжа, фундаментальное решение, обобщенная функция Миттаг – Леффлера.

УДК: 517.91

MSC: Primary 34A12; Secondary 34K09

DOI: 10.26117/2079-6641-2023-42-1-98-107



© МИАН, 2024