Аннотация:
Геоакустическая эмиссия является индикатором напряженно-деформированного состояния геосферы, поэтому она играет важную роль в разработке методики прогнозирования сильных землетрясений в сейсмоактивных регионах, таких как Камчатка. В работе исследуются некоторые аспекты качественного анализа математической модели высокочастотной геоакустической эмиссии. Математическая модель высокочастотной геоакустической эмиссии представляет собой цепочку из двух связанных осцилляторов, которая описывается системой из двух линейных обыкновенных дифференциальных уравнений второго порядка с непостоянными коэффициентами. Непостоянные коэффициенты обладают свойством непрерывного затухания при больших временах. Каждое дифференциальное уравнение описывает импульс высокочастотной геоакустической эмиссии со своими характеристиками, а взаимодействие между импульсами – обмен энергией осуществляется с помощью коэффициента линейной связи. Для математической модели были исследованы вопросы существования и единственности решения, доказана соответствующая теорема на основе принципа сжимающих отображений из функционального анализа. Исследована устойчивость нулевого решения математической модели геоакустической эмиссии, результаты были сформулированы в виде теоремы, а также исследована устойчивость при больших временах с помощью критерия Рауса-Гурвица. Проведено исследование на жесткость, показано, какие параметры в модели могут влиять на жесткость исследуемой системы дифференциальных уравнений, приведена визуализация исследований зависимости жесткости от времени. С помощью численного метода Розенброка, реализуемого в среде компьютерной математики Maple были построены осциллограммы и фазовые траектории при различных условиях: наличия жесткости, неустойчивости и т.д. Проведена интерпретация результатов исследования и даны направления дальнейшего исследования математической модели высокочастотной геоакустической эмиссии.
Ключевые слова:высокочастотная геоакустическая эмиссия, функция Берлаге, жесткость, существование и единственность, устойчивость, критерий Рауса-Гурвица, математическая модель, осциллограммы.