Аннотация:
Исследуется спектральная задача для обыкновенного дифференциального уравнения с композицией операторов дробного дифференцирования в смысле Римана-Лиувилля и Капуто с различными началами. Доказано, что исследуемая задача имеет бесконечное число собственных значений и собственных функций. Все собственные значения являются вещественными и положительными, а собственные функции образуют полную ортогональную систему в $L_{2}\left(0,1\right)$.