Аннотация:
Нелокальные краевые задачи для параболических уравнений, в том числе уравнения теплопроводности, стали объектом исследований достаточно давно. Интерес к такого рода задачам вызван необходимостью дальнейшего развития теории краевых задач со смещением (задач Нахушева), а также в связи с их многочисленными приложениями. Настоящая статья посвящена исследованию вопроса однозначной разрешимости одного класса нелокальных краевых задач для уравнения теплопроводности. Рассмотрена задача отыскания регулярного решения уравнения теплопроводности с дробной производной Римана -Лиувилля в граничных условиях. Рассмотрена задача Коши для уравнения, эквивалентного исходному уравнению, при этом доказано, что рассматриваемая краевая задача редуцируется к первой краевой задаче для уравнения теплопроводности при условии, что задача Коши имеет единственное решение в классе функций, удовлетворяющих условиям А. Н. Тихонова. При этом решение представимо в виде интегрального уравнения, содержащим функцию Барретта в ядре. Также редукцией к системе дифференциальных уравнений с дробной производной Римана – Лиувилля решается вопрос единственности и существования решения поставленной задачи, когда в условии стоят значения решения на другом конце. Полученные в работе результаты послужат основой для дальнейшего исследования нелокальных краевых задач для дифференциальных уравнений параболического типа, лежащих в основе математического моделирования процессов в системах с фрактальной структурой, а также развития теории дифференциальных уравнений дробного порядка.
Ключевые слова:класс нелокальных краевых задач, условия Тихонова, регулярное решение, задача Коши, однородная задача, оператор дробного дифференцирования, дифференциальные уравнения дробного порядка.