Аннотация:
Непрерывный мониторинг вариаций объемной активности радона с целью поиска ее аномальных значений, предшествующих сейсмическим событиям, является одной из эффективных методик исследования напряженно-деформированного состояния геосреды. Предлагается задача Коши, описывающая перенос радона с учетом его накопления в камере и наличия эффекта памяти геосреды. Модельное уравнение представляет собой нелинейное дифференциальное уравнение с непостоянными коэффициентами с производной в смысле Герасимова-Капуто дробного переменного порядка. В ходе математического моделирования, в среде MATLAB, переноса радона эредитарной $\alpha$(t)-моделью получено хорошее соответствие с экспериментальными данными. Это указывает на то, что эредитарная $\alpha$(t)-модель переноса радона является более гибкой, что позволяет с помощью нее описывать различные аномальные вариаций в значениях объемной активности радона в следствии напряженно-деформированного состояния геосреды. Показано, что порядок дробной производной может отвечать за интенсивность процесса переноса радона связанную с характеристиками геосреды. Показано, что за счет порядка дробной производной, а также квадратичной нелинейности в модельном уравнении результаты численного моделирования дают лучшую аппроксимацию экспериментальных данных радонового мониторинга, чем по классическим моделям.
Ключевые слова:математическое моделирование, нелинейные уравнения, эффект насыщения, дробные уравнения, дробные производные, эредитарность, эффекты памяти, нелокальность по времени, объёмная активность радона, напряженно-деформированное состояние, геосреда, предвестники землетрясений.