Аннотация:
В настоящее время известны результаты исследования краевых задач для двумерного уравнения Гельмгольца с одним и двумя сингулярными коэффициентами. При наличии двух положительных сингулярных коэффициентов в двумерном уравнении Гельмгольца явные решения задач Дирихле, Неймана и Дирихле-Неймана в четверти плоскости выражаются через вырожденную гипергеометрическую функцию двух переменных. Установленные свойства вырожденной гипергеометрической функции двух переменных позволяют доказать теорему единственности и существования решения поставленных задач. В данной работе изучаются задачи Дирихле, Неймана и Дирихле-Неймана для трехмерного уравнения Гельмгольца при нулевых значениях сингулярных коэффициентов в октанте, четверти пространства и полупространстве. Доказываются теоремы единственности и существования при определенных ограничениях на данные.Единственность решений которых доказывается с помощью принципа экстремума для эллиптических уравнений. Используя известное фундаментальное (сингулярное) решение уравнения Гельмгольца, решения исследуемых задач выписываются в явном виде.
Ключевые слова:
вырожденная гипергеометрическая функция трех переменных, система уравнений в частных производных, асимптотическая формула, трехмерное уравнение Гельмгольца с тремя сингулярными коэффициентами, задача Дирихле в первом бесконечном октанте.