Аннотация:
Рассматривается задача теории потенциала, описываемая уравнением Лапласа $\Delta u=0$. В работе предложен алгоритм решения задачи потенциала, основанный на методе граничных элементов. Рассмотрены примеры решения задачи Дирихле для круговой области, для куба и решения задачи для куба со смешанными граничными условиями. Проводится сравнение решений, полученными численно-аналитическим методом граничных элементов с аналитическими решениями и решениями, полученными численным интегрированием по граничным элементам.