Аннотация:
Рассмотрены гиперкомплексные числа образующие четырехмерное пространство полностью скалярных кватернионов. Соответствующая дополнительная алгебра построена в качестве невекторного расширения над полем комплексных чисел. Подобно обычным комплексным числам эта коммутативная алгебра 4-го ранга обладает свойствами деления, сопряжения, извлечения корня и факторизации наряду с прямым аналогом формулы Эйлера. Показано, что вращения представимы в этой алгебре без нарушения коммутативности. Некоторые из непосредственных приложений включают физику пучков, ускорителей и теорию волн.