Аннотация:
В работе рассматриваются пространства обобщенной переменной гёльдеровости функций, заданных на отрезке действительной оси, локальный обобщенный модуль непрерывности которых имеет мажоранту, изменяющуюся от точки к точке. Доказываются теоремы о действии операторов дробного интегрирования переменного порядка из пространств обобщенной переменной гёльдеровости в пространства с “лучшей” мажорантой и операторов дробного дифференцирования из таких же пространств в пространства с “худшей” мажорантой. Переменный порядок принимает действительные значения между нулем и единицей.
Ключевые слова:операторы дробного интегрирования, операторы дробного дифференцирования, обобщенный модуль непрерывности, обобщенные пространства Гёльдера с переменными характеристиками.