Аннотация:
Рассматриваются пространства функций, аналитических в выпуклой области и бесконечно дифференцируемых вплоть до ее границы, с заданными оценками всех производных. Для пространств, порожденных одним весом, получены необходимые и достаточные условия, при которых минимальные в определенном смысле системы экспонент являются в них абсолютно представляющими. С помощью этих результатов установлено, что абсолютно представляющие системы экспонент в пространствах такого типа не обладают устойчивостью относительно предельного перехода по области.
Ключевые слова:абсолютно представляющие системы, пространства аналитических функций, граничная гладкость.