Аннотация:
Рассматривается интегро-дифференциальная система уравнений вязкоупругости. Прямая задача заключается в определении вектора смещений из начально-краевой задачи для этой системы. Предполагается, что ядро, входящее в интегральный член уравнения, зависит как от временной, так и от пространственной переменной $x_2$. Для его отыскания задается дополнительное условие относительно первой компоненты вектора смещения при $x_3=0$. Обратная задача заменяется эквивалентной системой интегральных уравнений для неизвестных функций. Исследование проведено на основе метода шкал банаховых пространств аналитических функций. Доказана теорема локальной разрешимости обратной задачи в классе функций, аналитических по переменной $x_2$ и непрерывных по $t$.