Аннотация:
Теоретически изучаются условия корректности работы нового декодера мягких решений кодов Рида–Маллера второго порядка над полем $\mathbb F_3 $, экспериментальное исследование которого показало, что по корректирующей способности он значительно превосходит декодер по минимальному кодовому расстоянию Хемминга. Для дискретного канала передачи данных выделено условие гладкости, при выполнении которого доказано, что исследуемый декодер гарантировано исправляет все ошибки, число которых не превышает допустимое количество ошибок, предусмотренное конструкцией кода.