Аннотация:
Во многих прикладных задачах возникает ситуация, когда требуется восстановить значение функции по некоторой информации (обычно не точной и не полной). Общая задача об оптимальном восстановлении линейного функционала на классе функций по конечной информации впервые появилась в работе С. А. Смоляка. В дальнейшем эта тематика получила достаточно широкое развитие в самых разных направлениях. Существует множество подходов к решению подобных задач. Здесь мы следуем подходу, который предполагает наличие априорной информации об объекте, характеристики которого требуется восстановить. Это позволяет поставить задачу о нахождении наилучшего метода восстановления данной характеристики среди всех возможных методов восстановления. Такой взгляд на задачи восстановления идеологически восходит к работам А. Н. Колмогорова 30-х гг. прошлого века о нахождении наилучших средств приближения для классов функций. Математическая теория, где изучаются задачи восстановления на основе указанного подхода, активно развивается в последние десятилетия, обнаруживая тесные связи с классическими задачами теории приближений и имея различные приложения к задачам практики. Работа посвящена задаче наилучшего восстановления решения задачи Дирихле в метрике $L_2$ на прямой в верхней полуплоскости, параллельной оси абсцисс, по следующей информации о граничной функции: граничная функция принадлежит некоторому соболевскому пространству функций, а ее преобразование Фурье известно приближенное (в метрике $L_\infty$) на конечном отрезке, симметричном относительно нуля. Построен оптимальный метод восстановления и найдено точное значение погрешности оптимального восстановления. Следует отметить, что оптимальный метод использует, вообще говоря, не всю доступную информацию, а ту, которую использует, определенным образом «сглаживает».