Аннотация:
Цель настоящей статьи — дать обзор некоторых новых идей и недавних результатов в теории интегрирования скалярных функций относительно векторной меры, а также общих теорем о функциональном представлении квазибанаховых решеток. Приводится набросок чисто порядкового интеграла типа Канторовича–Райта скалярных функций относительно векторной меры, заданной на $\delta$-кольце и принимающей значения в порядково $\sigma$-полной векторной решетке. Также представлено интегрирование типа Бартла–Данфорда–Шварца по мере, определенной на $\delta$-кольце со значениями в квазибанаховой решетке. В контексте банаховых решеток решающую роль играют пространства интегрируемых и слабо интегрируемых функций относительно векторной меры. При решении задачи о функциональном представлении квазибанаховых решеток, подход, основанный на двойственности, не работает, но существуют два естественных кандидата для пространства слабо интегрируемых функций: максимальное квазибанахово расширение и область определения наименьшего расширения интегрального оператора. Используя эту идею, можно построить новые пространства слабо интегрируемых функций, которые играют существенную роль в задаче о функциональном представлении квазибанаховых решеток. В частности, показано, что при изучении квазибанаховых решеток, когда метод двойственности не применим, интеграл Канторовича–Райта оказывается более гибким инструментом, чем интеграл Бартла–Данфорда–Шварца.
Ключевые слова:квазибанахова решетка, положительная векторная мера, интеграл Канторовича–Райта, интеграл Бартла–Данфорда–Шварца, оператор интегрирования, пространство интегрируемых функций, пространство слабо интегрируемых функций.