Аннотация:
В пространстве целых функций экспоненциального типа, реализующем сильное сопряженное к пространству Фреше функций, бесконечно дифференцируемых на вещественном интервале, содержащем начало координат, исследованы линейные непрерывные операторы, перестановочные с оператором Поммье. Они задаются линейным непрерывным функционалом на упомянутом пространстве целых функций, а значит, с точностью до сопряженного к преобразованию Фурье–Лапласа, бесконечно дифференцируемой функцией на исходном интервале. Дана полная характеризация функционалов, определяющих указанным образом изоморфизмы. Доказано, что изоморфизм задается функциями, не равными $0$ в начале координат (и только ими). Существенную роль в доказательстве соответствующего критерия играет метод, использующий теорию компактных операторов в банаховых пространствах. Выделен класс тех бесконечно дифференцируемых на исходном интервале функций, которые задают операторы из упомянутого коммутанта, близкие к изоморфизму. Такие операторы имеют конечномерное ядро. Для интервала, отличного от вещественной прямой, мы определяем также класс операторов из коммутанта оператора Поммье, не являющихся сюръективными. Сопряженный к линейному непрерывному оператору, перестановочному с оператором Поммье, реализуется в пространстве бесконечно дифференцируемых функций как оператор, полученный фиксированием одного сомножителя в произведении Дюамеля. Существенное отличие рассмотренной ситуации от исследовавшихся ранее состоит в отсутствии циклических векторов у оператора Поммье в исходном пространстве целых функций.
Ключевые слова:оператор Поммье, целая функция экспоненциального типа, пространство бесконечно дифференцируемых функций, коммутант, изоморфизм.