Аннотация:
В работе исследована однозначная разрешимость задачи типа задачи Бицадзе–Самарского для уравнения третьего порядка с разрывными коэффициентами в односвязной области. Краевое условие поставленной задачи содержит оператор дробного интегро-дифференцирования с гипергеометрической функцией Гаусса, от значений решения на характеристиках поточечно связанных со значениями решения и производной от него на линии вырождения. При определенных ограничениях типа неравенства на заданные функции и порядки дробных производных в краевом условии, методом интегралов энергии, доказана единственность решения поставленной задачи. Получены функциональные соотношения между следом искомого решения и производной от него, принесенные на линию вырождения из гиперболической и параболической частей смешанной области. При выполнении условий теорем единственности, доказано существование решения задачи путем эквивалентной редукции к интегральным уравнениям Фредгольма второго рода относительно производной от следа искомого решения, безусловная разрешимость которого заключается из единственности решения задачи. Так же определены промежутки изменения порядков операторов дробного интегро-дифференцирования, при которых решение задачи существует и единственно. Установлен эффект влияния коэффициента при младшей производной в уравнении на разрешимость поставленной задачи.
Ключевые слова:оператор дробного интегро-дифференцирования, метод интегралов энергии, уравнение с разрывными коэффициентами, краевая задача, интегральное уравнение Фредгольма второго рода.