RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2018, том 20, номер 4, страницы 67–75 (Mi vmj678)

О частном решении неоднородного уравнения свертки в пространствах ультрадифференцируемых функций

Д. А. Поляковаab

a Южный федеральный университет, Россия, 344090, Ростов-на-Дону, ул. Мильчакова, 8а
b Южный математический институт — филиал ВНЦ РАН, Россия, 362027, Владикавказ, ул. Маркуса, 22

Аннотация: В работе рассматриваются пространства ультрадифференцируемых функций Берлинга нормального типа на числовой прямой, задаваемые весами определенного вида. Указанные пространства представляют собой обобщенные проективные аналоги известных классов Жевре. В данных пространствах исследуется неоднородное уравнение свертки (дифференциальное уравнение бесконечного порядка с постоянными коэффициентами), определяемое символом, имеющим только простые нули и удовлетворяющим естественным ограничениям роста. По нулям символа в явном виде строится симметричная последовательность точек действительной оси, в которых модуль символа имеет подходящую оценку снизу. Построенная последовательность порождает абсолютно представляющую систему экспонент с мнимыми показателями в рассматриваемом пространстве. Это позволяет разложить правую часть исследуемого уравнения в абсолютно сходящийся ряд по указанной системе и выписать частное решение уравнения также в виде абсолютно сходящегося ряда, коэффициенты которого, естественно, определяются правой частью уравнения. В этом заключается основной результат работы. Доказательство существенным образом опирается на аналогичные результаты, полученные ранее в случае пространств на конечном интервале, а также на свойство устойчивости слабо достаточных множеств и абсолютно представляющих систем. В работе приводятся конкретные примеры построения нужной последовательности точек.

Ключевые слова: пространство ультрадифференцируемых функций, неоднородное уравнение свертки.

УДК: 517.983

MSC: 44A35, 46E10

Поступила в редакцию: 05.04.2018

DOI: 10.23671/VNC.2018.4.23389



Реферативные базы данных:


© МИАН, 2024