Аннотация:
По классической теореме Уитни каждое открытое множество на плоскости можно представить в виде объединения специальных квадратов, внутренности которых не пересекаются. В статье, используя эти свойства квадратов Уитни, вводится новое понятие: для каждого центра $a_k$ квадрата Уитни существует точка $a_k^*\in C/G$ такая, что расстояние до границы открытого множества $G$ заключается между двумя константами независимо от $k$. Используя свойства Уитни в статье, в частности, устанавливается необходимое и достаточное условие на ${z_k }_1^{\infty}\subset G$, при котором оператор $R(f)=(f(z_1),f(z_2),\ldots,f(z_n),\ldots)$ отображает обобщенные плоские классы Неванлинны по множеству $G$ в $l^p$.
Ключевые слова:классы Неванлинны, интерполяция, разложение Уитни, пространство Бергмана.