RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2020, том 22, номер 3, страницы 5–17 (Mi vmj729)

Ограниченность классических операторов в весовых пространствах голоморфных функций

А. В. Абанинab, Ю. В. Кораблинаab

a Южный федеральный университет, РОССИЯ, 344090, Ростов-на-Дону, ул. Мильчакова, 8 а
b Южный математический институт — филиал ВНЦ РАН, РОССИЯ, 362027, Владикавказ, ул. Маркуса, 22

Аннотация: В работе устанавливаются критерии ограниченности классических операторов, действующих из абстрактных банаховых пространств голоморфных в области функций в весовые пространства тех же функций с равномерной нормой. Представлено дальнейшее развитие идеи Н. Зорбоска, в соответствии с которой условия ограниченности операторов весовой композиции, включая операторы умножения и обычной композиции, и интегрального оператора Вольтерра могут быть сформулированы в терминах норм $\delta$-функций в соответствующих сопряженных пространствах. В качестве приложений получены критерии ограниченности упомянутых операторов в обобщенных пространствах Бергмана и Фока. В конкретных пространствах эти критерии удается сформулировать в терминах весов, определяющих пространства, и функций, задающих композицию. По сравнению с предшествующими результатами существенно расширен класс весовых пространств голоморфных в единичном круге функций с равномерными нормами, для которых удается реализовать метод Н. Зорбоска. Кроме того, разработано распространение этого подхода на весовые пространства целых функций. На этом пути введен класс почти гармонических весов и получены оценки норм $\delta$-функций в пространствах, сопряженных с обобщенными пространствами Фока, определяемыми почти гармоническими весами.

Ключевые слова: весовые пространства голоморфных функций, оператор весовой композиции, оператор Вольтерра, пространства Бергмана, пространства Фока.

УДК: 517.9

MSC: 47B38, 46E15, 30H20

Поступила в редакцию: 25.05.2020

DOI: 10.46698/u5398-4279-7225-c



© МИАН, 2024