Аннотация:
В данной работе изучаются свойства характеристик колеблемости Сергеева решений линейных однородных дифференциальных уравнений второго порядка с непрерывными периодическими коэффициентами. Известно, что верхние (слабые и сильные) показатели колеблемости нулей, корней, гиперкорней, строгих и нестрогих смен знаков совпадают с верхними частотами Сергеева нулей, корней и строгих смен знаков. Аналогичное свойство имеет место и для всех перечисленных нижних характеристик колеблемости Сергеева. Однако верхние характеристики решений линейных однородных дифференциальных уравнений второго порядка с ограниченными коэффициентами не всегда совпадают с нижними. В настоящей работе установлено равенство между всеми характеристиками колеблемости Сергеева на множестве решений уравнения Хилла. Более того, найдена эффективная формула, позволяющая их находить и проводить исследование на устойчивость уравнения Хилла. Кроме того, получена формула, связывающая мультипликаторы уравнения Хилла с нецелой частотой Сергеева. Найдены необходимые и достаточные условия устойчивости частоты уравнения Хилла. При доказательстве результатов настоящей работы осуществлялся переход от декартовых координат к полярным, благодаря чему для полярного угла получаем уравнение, которое можно трактовать как уравнение на торе. В качестве вспомогательного результата установлено равенство между числом вращения и частотой уравнения Хилла.
Ключевые слова:уравнение Хилла, дифференциальное уравнение на торе, колеблемость, число нулей, показатель колеблемости, число вращения, частота Сергеева, мультипликатор.