Аннотация:
В работе представлена обратная задача последовательного определения двух неизвестных — коэффициента, характеризующего свойства среды со слабо горизонтальной неоднородностью, и ядра интегрального оператора, описывающего память среды. Прямая начально-краевая задача содержит нулевые данные и граничное условие Неймана. В качестве дополнительной информации задается след на границе среды Фурье-образа решения прямой задачи. Для исследования обратных задач предполагается, что искомый коэффициент разлагается в асимптотический ряд по степеням малого параметра. В статье построен метод нахождения (с учетом памяти среды) коэффициента с точностью до поправки, имеющей порядок $O(\epsilon^2)$. На первом этапе одновременно определяется решение прямой задачи в нулевом приближении и ядро интегрального оператора, при этом обратная задача сводится к эквивалентной задаче решения системы нелинейных интегральных уравнений Вольтерра второго рода. На втором этапе ядро считается заданным, и одновременно определяется решение прямой задачи в первом приближении и искомый коэффициент. В этом случае решение эквивалентной обратной задачи будет решением линейной системы интегральных уравнений Вольтерра второго рода. Доказаны теоремы однозначной локальной разрешимости поставленных обратных задач. Приведены результаты численных расчетов функции ядра и коэффциента.