Аннотация:
Категория метрических пространств является подкатегорией квазиметрических пространств. Показано, что энтропия отображения в пространстве с условиями симметричности больше или равна энтропии того случая, когда условия симметричности не предполагаются. Топологическая энтропия и энтропия Шеннона имеют схожие свойства такие, как неотрицательность, субаддитивность и снижение условной энтропии. Другими словами, топологическая энтропия рассматривается как расширение классической энтропии в динамических системах. В последнее десятилетие были введены различные обобщения энтропии Шеннона. Одной из них, обобщающей многие классические виды энтропии, является унифицированная $(r,s)$-энтропия. В данной работе понятие унифицированной $(r,s)$-энтропии распространяется на непрерывные отображения в квазиметрических пространствах посредством связующих и разделяющих множеств. Далее, рассматривается унифицирующая $(r, s)$-энтропия отображения в двух метрических пространствах, ассоциированных с квазиметрическим пространством и сравниваются унифицированные $(r, s)$-энтропии отображения в данном квазиметрическом пространстве и в ассоциированных метрических пространствах. Наконец, определяется топологическая энтропия Цаллиса для непрерывных отображений в квазиметрических пространствах посредствм определения Бовена и изучаются некоторые свойства, такие как цепное правило.