RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2022, том 24, номер 1, страницы 15–23 (Mi vmj797)

Нахождение неизвестной быстро осциллирующей правой части в многомерной гиперболической системе первого порядка

П. В. Бабич

Математический институт им. В. А. Стеклова Российской академии наук, Россия, 119991, Москва, ул. Губкина, 8

Аннотация: В работе рассматривается задача Коши с нулевым начальным условием для многомерной линейной гиперболической системы дифференциальных уравнений первого порядка с постоянными коэффициентами и быстро осциллирующей по времени правой частью. Каждая компонента последней является произведением двух функций, одна из которых зависит только от пространственной переменной, а вторая — только от временной и «быстрой временной» переменных. Функции-сомножители, зависящие от пространственной переменной, известны, а зависящие от времени быстро осциллирующие сомножители неизвестны. Поставлена и решена обратная коэффициентная задача о восстановлении последних по некоторым дополнительным сведениям о частичной асимптотике решения задачи Коши в том случае, когда правая часть системы известна (прямая задача). Эти дополнительные сведения состоят в задании значений нескольких первых коэффициентов асимптотики, вычисленных в определенной точке пространства. Такой вид условия переопределения (дополнительного условия) отличает постановку обратной задачи от постановки, используемой в классической теории обратных коэффициентных задач, где условия переопределения ставятся на точное решение. Таким образом, в работе постановка и решение обратной задачи предваряются решением задачи, состоящей в построении и обосновании частичной асимптотики решения. На этом этапе, в частности, определяется, сколько первых коэффициентов асимптотического разложения решения будет задействовано в условии переопределения обратной задачи. Отметим еще, что эволюционные задачи с быстро осциллирующими данными играют важную роль в математике и ее приложениях уже потому, что моделируют многие физические процессы; к примеру, связанные с высокочастотными механическими, электромагнитными или иными колебаниями. При этом вопрос о построении для таких задач нескольких первых членов асимптотики решения нередко является существенно более простым, нежели построение собственно решения (а также вычисленние его значений в нужных точках). Поэтому развитие для быстро осциллирующих задач теории обратных коэффициентных задач представляется несомненно актуальным.

Ключевые слова: уравнения с частными производными, гиперболические системы, быстро осциллирующая правая часть, асимптотика решения, обратная задача.

УДК: 517.955.8

MSC: 35L40, 35L45, 35R30, 35C20

Поступила в редакцию: 19.06.2021

DOI: 10.46698/u8315-8858-4224-f



Реферативные базы данных:


© МИАН, 2024