Аннотация:
В работе рассматривается задача Коши с нулевым начальным условием для многомерной линейной гиперболической системы дифференциальных уравнений первого порядка с постоянными коэффициентами и быстро осциллирующей по времени правой частью. Каждая компонента последней является произведением двух функций, одна из которых зависит только от пространственной переменной, а вторая — только от временной и «быстрой временной» переменных. Функции-сомножители, зависящие от пространственной переменной, известны, а зависящие от времени быстро осциллирующие сомножители неизвестны. Поставлена и решена обратная коэффициентная задача о восстановлении последних по некоторым дополнительным сведениям о частичной асимптотике решения задачи Коши в том случае, когда правая часть системы известна (прямая задача). Эти дополнительные сведения состоят в задании значений нескольких первых коэффициентов асимптотики, вычисленных в определенной точке пространства. Такой вид условия переопределения (дополнительного условия) отличает постановку обратной задачи от постановки, используемой в классической теории обратных коэффициентных задач, где условия переопределения ставятся на точное решение. Таким образом, в работе постановка и решение обратной задачи предваряются решением задачи, состоящей в построении и обосновании частичной асимптотики решения. На этом этапе, в частности, определяется, сколько первых коэффициентов асимптотического разложения решения будет задействовано в условии переопределения обратной задачи. Отметим еще, что эволюционные задачи с быстро осциллирующими данными играют важную роль в математике и ее приложениях уже потому, что моделируют многие физические процессы; к примеру, связанные с высокочастотными механическими, электромагнитными или иными колебаниями. При этом вопрос о построении для таких задач нескольких первых членов асимптотики решения нередко является существенно более простым, нежели построение собственно решения (а также вычисленние его значений в нужных точках). Поэтому развитие для быстро осциллирующих задач теории обратных коэффициентных задач представляется несомненно актуальным.
Ключевые слова:уравнения с частными производными, гиперболические системы, быстро осциллирующая правая часть, асимптотика решения, обратная задача.