Аннотация:
Настоящая работа подготовлена на основе доклада, сделанного авторами в рамках XVI Международной научной конференции «Порядковый анализ и смежные вопросы математического моделирования. Теория операторов и дифференциальные уравнения» (Владикавказ, сентябрь 2021 г.). Дается краткий обзор наших недавних результатов о связи полиномов Бернштейна и Канторовича для важного примера — симметричного модуля. Хорошо известно, что подобные негладкие функции играют особую роль в теории аппроксимации. Посредством полученных соотношений исследование полиномов Канторовича удается во многом свести к прямому использованию свойств полиномов Бернштейна. В частности, на основном отрезке $[0,1]$ рассмотрено уклонение полиномов Канторовича от порождающего их симметричного модуля. Помимо весьма точных оценок сверху и снизу отмечена простая асимптотическая формула, действующая для уклонения во всех точках $x\in[0,1]$ при $n\rightarrow\infty$. Характер сходимости полиномов Канторовича оказывается принципиально иным по сравнению с тем, что дают на $[0,1]$ полиномы Бернштейна. Приведены также новые результаты о сходимости полиномов Канторовича в комплексной плоскости. Указано точное множество сходимости, совпадающее с множеством сходимости полиномов Бернштейна. Это так называемый компакт Канторовича, ограниченный лемнискатой $|4z(1-z)|=1$. Всюду на компакте найдена скорость сходимости полиномов Канторовича к соответствующей предельной функции. В связи с лимитированным объемом статьи мы излагаем только схему рассуждений. Подробные доказательства планируется привести отдельно.
Ключевые слова:полиномы Бернштейна, полиномы Канторовича, симметричный модуль, скорость сходимости, оценки уклонения, сходимость в комплексной плоскости.