Аннотация:
Геометрическая теория аналитических функций (ГТАФ) является привлекательной частью комплексного анализа, взаимосвязанная с другими разделами математики. Его основная цель состоит в том, чтобы определить различные классы геометрических аналитических функций и обсудить их геометрические свойства. В дальнейшем появилась взаимосвязь между теорией операторов и ГТАФ, которая до сих пор привлекает широкое внимание. В прошлом столетии теория операторов была распространена на открытый единичный круг комплексной плоскости и применялась для предложения разнообразных обобщений нормализованных аналитических функций. В результате теория операторов оказалась хорошим способом исследования в области ГТАФ. С тех пор изучение геометрических свойств с помощью операторов стало важной темой исследований. Настоящее исследование сосредоточено на изучении свойства выпуклости в классах $\ell$-равномерно выпуклых и звездообразных функций порядка $\beta$ с использованием модифицированного интегро-дифференциального оператора Бриза в единичном круге. Кроме того, в классе аналитических функций рассматриваются некоторые условия, обеспечивающие звездообразность оператора Бриза.