Аннотация:
Рассматривается многоточечная краевая задача для нелинейной нормальной системы обыкновенных дифференциальных уравнений с быстро осциллирующей по времени правой частью. Некоторые слагаемые правой части могут иметь большую амплитуду — пропорциональную квадратному корню из частоты осцилляций. Для этой зависящей от большого параметра (высокой частоты осцилляций) задачи обоснован метод усреднения Крылова — Боголюбова. Именно, для указанной задачи, которую называют возмущенной, построена предельная (усредненная) многоточечная краевая задача и обоснован предельный переход (т. е. доказана асимптотическая близость решений возмущенной и усредненной задач) в гельдеровом пространстве определенных на рассматриваемом временном отрезке вектор-функций. Используемый в данной работе подход опирается на классическую теорему о неявной функции в банаховом пространстве; этот подход в теории метода усреднения впервые применил, по-видимому, И. Б. Симоненко (см. указанную в статье соответствующую ссылку) при обосновании этого метода для абстрактных параболических уравнений в случае задачи Коши и задачи о периодических по времени решениях. Метод усреднения Крылова — Боголюбова является одним из важнейших асимптотических методов. Он широко известен и разработан с большой полнотой для различных классов уравнений. В многочисленных работах, в которых рассматриваются системы обыкновенных дифференциальных уравнений, изучаются, в основном, задача Коши на отрезке и задачи о периодических, почти периодических и общих ограниченных на всей временной оси решениях. Краевые задачи — особенно многоточечные — представлены в литературе еще недостаточно.
Ключевые слова:нормальная система ОДУ, большие высокочастотные слагаемые, метод усреднения, многоточечная краевая задача.