RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2022, том 24, номер 3, страницы 37–54 (Mi vmj823)

Об одной разностной схеме решения задачи Дирихле для многомерного уравнения диффузии с дробной производной Капуто в области с произвольной границей

З. В. Бештокова, М. Х. Бештоков, М. Х. Шхануков-Лафишев

Институт прикладной математики и автоматизации — филиал КБНЦ РАН, Россия, 360004, Нальчик, ул. Шортанова, 89 A

Аннотация: В настоящей работе исследуется задача Дирихле для уравнения диффузии с дробной производной Капуто в многомерном случае в области с произвольной границей. Вместо исходного уравнения рассматривается уравнение диффузии с дробной производной Капуто с малым параметром. Построена локально-одномерная разностная схема А. А. Самарского, основная суть которой состоит в сведении перехода со слоя на слой к последовательному решению ряда одномерных задач по каждому из координатных направлений. При этом каждая из вспомогательных задач может не аппроксимировать исходную задачу, но в совокупности и в специальных нормах такая аппроксимация имеет место. Эти методы были названы методами расщепления. С помощью принципа максимума получена априорная оценка в равномерной метрике в норме $C$. Доказаны устойчивость локально-одномерной разностной схемы и равномерная сходимость приближенного решения предложенной разностной схемы к решению исходной дифференциальной задачи при любых $0<\alpha<1$. Проведен анализ выбора оптимальных значений $\varepsilon$, при которых скорость равномерной сходимости приближенного решения рассматриваемой разностной схемы к решению исходной дифференциальной задачи будет определяться наилучшим образом.

Ключевые слова: уравнение конвекции-диффузии, уравнение дробного порядка, дробная производная в смысле Капуто, принцип максимума, локально-одномерная схема, устойчивость и сходимость, краевые задачи, априорная оценка.

УДК: 519.63

MSC: 65N06, 65N12

Поступила в редакцию: 05.08.2021

DOI: 10.46698/v2914-8977-8335-s



Реферативные базы данных:


© МИАН, 2024