Аннотация:
В данной работе мы изучаем поведение решений задачи Коши для вырожденных параболических уравнений с неоднородной плотностью при неограниченном возрастании времени. При определенных условиях на параметры задачи и поведения плотностной функции на бесконечности устанавливаются новые точные оценки решений при неограниченном возрастании времени. Одним из основных моментом в доказательстве является новая теорема вложения, представляющая независимый интерес. Кроме того, в доказательстве равномерных оценок решения используется модифицированная версия классического метода Де-Джорджи — Ладыженская — Уральцева — Ди Бенедетто. Аналогичные результаты для неоднородной плотности степенного роста были получены одним из авторов в [10]. Подход данной работы может быть использован также при качественном изучении решений задачи Неймана для дважды нелинейного параболического уравнения в областях с некомпактными границами.
Ключевые слова:вырождающееся параболическое уравнение, неоднородная плотность, весовые вложения, поведение при неограниченном возрастании времени.