Аннотация:
В данной статье рассматривается задача оптимального управления для модельной системы, которая описывается одномерным неоднородным диффузионно-волновым уравнением, представляющим собой обобщение волнового уравнения на случай, когда производная по времени имеет дробный порядок и понимается в смысле Капуто. В общем случае мы рассматриваем как граничное, так и распределенное управление, которые считаются функциями, интегрируемыми по Лебегу с некоторой степенью $p$ ($p>1$, включая $p = \infty$). Ставятся и анализируются два типа задач оптимального управления: задача поиска управления с минимальной нормой при заданном времени управления и задача быстродействия — задача поиска управления, переводящего систему в заданное состояние за минимальное время при заданном ограничении на норму управления. Исследование строится на использовании точного решения диффузионно-волнового уравнения, с помощью которого задача оптимального управления сводится к бесконечномерной $l$-проблеме моментов. Мы также рассматриваем конечномерную $l$-проблему моментов, получаемую аналогичным образом с использованием приближенного решения диффузионно-волнового уравнения. Для этой задачи анализируется корректность и разрешимость. Наконец, рассматривается пример расчета граничного управления с использованием конечномерной $l$-проблемы моментов.