Аннотация:
Дробное исчисление является мощным инструментом описания сложных систем с широким диапазоном применимости во многих областях науки и техники. Поведение многих систем можно описать с помощью дифференциальных уравнений дробного порядка с граничными условиями. В этом смысле большое значение имеет исследование устойчивости дробных краевых задач.
Основная цель данной работы — исследование устойчивости по Уламу — Хайерсу и устойчивости по Уламу — Хайерсу — Рассиасу класса дробных четырехточечных краевых задач, содержащих производную Капуто и с заданным параметром. Используя принцип сжимающих отображений, получаются достаточные условия, гарантирующие единственность решения. Таким образом, мы получаем достаточные условия устойчивости этого класса нелинейных дробных краевых задач в пространстве непрерывных функций. Представленные результаты улучшают и расширяют некоторые предыдущие исследования. Наконец, мы построим несколько примеров, иллюстрирующих полученные теоретические результаты.
Ключевые слова:дробная краевая задача, производная Капуто, устойчивость Улам — Хайерс, устойчивость Улам — Хайерс — Рассиас.