Аннотация:
В работах автора было начато изучение особого вида ограниченности решений систем дифференциальных уравнений, а именно, их ограниченности по Пуассону. Понятие ограниченности по Пуассону решения обобщает классическое понятие ограниченности решения и состоит в том, что в фазовом пространстве найдутся такой шар и на временно́й полуоси такая счетная система непересекающихся интервалов, последовательность правых концов которых стремится к плюс бесконечности, что решение при всех значениях времени из этих интервалов содержится в данном шаре. Далее в работах автора на основе методов функций Ляпунова, вектор-функций Ляпунова и высших производных функций Ляпунова были получены достаточные условия различных видов ограниченности по Пуассону всех решений. В частности, были получены достаточные условия тотальной ограниченности (ограниченности при малых возмущениях) по Пуассону, частичной тотальной ограниченности по Пуассону, а также частичной тотальной ограниченности по Пуассону решений с частично контролируемыми начальными условиями. В настоящей работе автором была получена асимптотическая или, как еще говорят, финальная характеризация понятия ограниченности по Пуассону решения, которая позволила установить связь между понятием ограниченного по Пуассону решения и понятием осциллирующего решения. Далее в работе введены понятия тотальной осциллируемости решений, частичной тотальной осциллируемости решений и частичной тотальной осциллируемости решений с частично контролируемыми начальными условиями. На основе указанной выше финальной характеризации понятия ограниченности по Пуассону решения, а также на основе метода вектор-функций Ляпунова с системами сравнений в работе получены достаточные условия тотальной осциллируемости, частичной тотальной осциллируемости, а также частичной тотальной осциллируемости решений с частично контролируемыми начальными условиями. Как следствия получены достаточные условия указанных выше видов тотальной осциллируемости решений в терминах функций Ляпунова.
Ключевые слова:ограниченность по Пуассону решений, частичная ограниченность по Пуассону решений, неограниченность решений, вектор-функции Ляпунова, осциллируемость решений, частичная осциллируемость решений.