RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2023, том 25, номер 1, страницы 64–80 (Mi vmj848)

Многомерное неавтономное эволюционное уравнение типа Монжа — Ампера

И. В. Рахмелевич

Национальный исследовательский Нижегородский государственный университет имени Н. И. Лобачевского, Россия, 603950, Нижний Новгород, пр. Гагарина, 23

Аннотация: Исследовано многомерное неавтономное эволюционное уравнение типа Монжа — Ампера. Левая часть уравнения содержит первую производную по времени с коэффициентом, зависящим от времени, пространственных переменных и искомой функции, а правая часть — определитель матрицы Гессе. Получены решения данного уравнения с аддитивным и мультипликативным разделением переменных, и показано, что достаточным условием существования таких решений является возможность представления коэффициента при производной по времени в виде произведения функций от времени и от пространственных переменных. Также найдены решения в виде квадратичных полиномов по пространственным координатам в случае, когда коэффициент при производной по времени имеет вид функции, обратной линейной комбинации пространственных переменных с коэффициентами, зависящими от времени. Получено множество решений в виде разложения по функциям, зависящим от подмножеств пространственных переменных с коэффициентами, зависящими от времени, и найдены достаточные условия существования таких решений. Рассмотрены некоторые редукции исходного уравнения к обыкновенным дифференциальным уравнениям (ОДУ) в случаях, когда искомая функция зависит от суммы функций пространственных координат (в частности, суммы их квадратов) и функции времени; при этом используется функциональное разделение переменных. Также найдены редукции исходного уравнения к уравнениям в частных производных меньшей размерности. В частности, получены решения в виде функции времени и суммы квадратов пространственных координат, а также в виде суммы нескольких таких функций и найдены достаточные условия их существования.

Ключевые слова: эволюционное уравнение, уравнение Монжа — Ампера, разделение переменных, редукция, обыкновенное дифференциальное уравнение, уравнение в частных производных.

УДК: 517.957

MSC: 35G20

Поступила в редакцию: 24.12.2021

DOI: 10.46698/o3604-7902-1000-g



Реферативные базы данных:


© МИАН, 2024